Visual Tracking
Jiri Matas

Center for Machine Perception
Department of Cybernetics,
Faculty of Electrical Engineering
Czech Technical University,

Prague, Czech Republic
Visual Tracking
Jiri Matas

„... Although tracking itself is by and large a solved problem...“,

-- Jianbo Shi & Carlo Tomasi
CVPR1994 --
Outline of the Lecture

1. Visual tracking: not one, but many problems.
2. The KLT tracker
3. The Mean-Shift tracker
4. Discriminative Correlation Filters
5. Tracking by detection
6. The TLD tracker - a robust long-term tracker example
7. How to evaluate a tracker?
Outline of the Lecture

1. Visual tracking: not one, but many problems.

2. The KLT tracker
3. The Mean-Shift tracker
4. Discriminative Correlation Filters
5. Tracking by detection
6. The TLD tracker - a robust long-term tracker example

7. How to evaluate a tracker?
Application domains of Visual Tracking

- monitoring, assistance, surveillance, control, defense
- robotics, autonomous car driving, rescue
- measurements: medicine, sport, biology, meteorology
- human computer interaction
- augmented reality
- film production and postproduction: motion capture, editing
- management of video content: indexing, search
- action and activity recognition
- image stabilization
- mobile applications
- camera “tracking”
Applications, applications, applications, ...

![Images of various applications: gesture recognition, motion capture, medical imaging, surveillance cameras, and virtual environment.]
Tracking Applications

– Team sports: game analysis, player statistics, video annotation, ...
Sport examples

http://cvlab.epfl.ch/~lepetit/

Slide Credit: Patrick Perez
Model-based Tracking: People and Faces

http://cvlab.epfl.ch/research/completed/realtime_tracking/

http://www.cs.brown.edu/~black/3Dtracking.html

Slide Credit: Patrick Perez
Is it clear, what tracking is?
Surprisingly little is said about tracking in standard textbooks. Limited to optic flow, plus some basic trackers, e.g. Lucas-Kanade.

Definition (0):
[Forsyth and Ponce, Computer Vision: A modern approach, 2003]

“Tracking is the problem of generating an inference about the motion of an object given a sequence of images. Good solutions of this problem have a variety of applications...”
Formulation (1): Tracking

Establishing point-to-point correspondences
in consecutive frames of an image sequence

Notes:

• The concept of an “object” in F&P definition disappeared.
• If an algorithm correctly established such correspondences, would that be a perfect tracker?
• tracking = motion estimation?
Tracking is Motion Estimation / Optic Flow?
Tracking is Motion Estimation / Optic Flow?
Tracking is Motion Estimation / Optic Flow?

Motion “pattern”

Camera tracking

http://www.cs.cmu.edu/~saada/Projects/CrowdSegmentation/

http://www.youtube.com/watch?v=ckVQrwYljAs

Dense motion field

Sparse motion field estimate
Optic Flow

Standard formulation:
• At every pixel, 2D displacement is estimated between consecutive frames

Missing:
• occlusion - disocclusion handling: pixels visible in one image only
 - in the standard formulation, “don’t know” is not an answer
• considering the 3D nature of the world
• large displacement handling - only recently addressed (EpicFlow 2015)

Practical issues hindering progress in optic flow:
• is the ground truth ever known?
 - learning and performance evaluation problematic (synthetic sequences ..)
• requires generic regularization (smoothing)
• failure (assumption validity) not easy to detect

In certain applications, tracking is motion estimation on a part of the image with specific constraints: augmented reality, sports analysis
Formulation (1): Tracking

Establishing point-to-point correspondences in consecutive frames of an image sequence

Notes:

- The concept of an “object” in F&P definition disappeared.
- If an algorithm correctly established such correspondences, would that be a perfect tracker?
- tracking = motion estimation?

Consider the Bolt sequence:
Formulation (1*): Tracking

Establishing point-to-point correspondences between all pairs of frames in an image sequences

• which leads to the concept of long-term tracking, to be discussed later
Definition (2): Tracking

Given an initial estimate of its position,
locate X in a sequence of images,

Where X may mean:
- A (rectangular) region
- An “interest point” and its neighbourhood
- An “object”

This definition is adopted e.g. in a recent book by Maggio and Cavallaro, Video Tracking, 2011

Smeulders T-PAMI13:
Tracking is the analysis of video sequences for the purpose of establishing the location of the target over a sequence of frames (time) starting from the bounding box given in the first frame.
Formulation (3): Tracking as Segmentation

J. Fan et al. Closed-Loop Adaptation for Robust Tracking, ECCV 2010
Tracking as model-based segmentation
Tracking as segmentation

- heart

 [link to UCSD research page]

A “standard” CV tracking method output

Approximate motion estimation, approximate segmentation. Neither good optic flow, neither precise segmentation required.
Rotated B-Boxes - Interpretation?
Rotated B-Boxes - Interpretation?
Formulation (4): Tracking

Given an initial estimate of the pose and state of X:

In all images in a sequence, (in a causal manner)

1. estimate the pose and state of X
2. (optionally) update the model of X

- Pose: any geometric parameter (position, scale, ...)
- State: appearance, shape/segmentation, visibility, articulations
- Model update: essentially a semi-supervised learning problem
 - a priori information (appearance, shape, dynamics, ...)
 - labeled data ("track this") + unlabeled data = the sequences
- Causal: for estimation at T, use information from time $t \leq T$
Tracking in 6D.
Tracking-Learning-Detection (TLD)
A "miracle": Tracking a Transparent Object

Tracking the “Invisible”

Formulation (5): Tracking

Given an estimate of the pose (and state) of X in “key” images (and a priori information about X),

In all images in a sequence, (in a causal manner):

1. estimate the pose and state of X
2. (optionally) estimate the state of the scene [e.g. “supporters”]
3. (optionally) update the model of X

Out: a sequence of poses (and states), (and/or the learned model of X)

Notes:

• Often, not all parameters of pose/state are of interest, and the state is estimated as a side-effect.
• If model acquisition is the desired output, the pose/state estimation is a side-effect.
• The model may include: relational constraints and dynamics, appearance change as a function as pose and state
Short-term v. Long-term Tracking v. OF

Short-term Trackers:
• primary objective: “where is X?” = precise estimation of pose
• secondary: be fast; don’t lose track
• evaluation methodology: frame number where failure occurred
• examples: Lucas Kanade tracker, mean-shift tracker

Long-term Tracker-Detectors:
• primary objective: unsupervised learning of a detector, since every (short-term) tracker fails, sooner or later (disappearance from the field of view, full occlusion)
• avoid the “first failure means lost forever” problem
• close to online-learned detector, but assumes and exploits the fact that a sequence with temporal pose/state dependence is available
• evaluation methodology: precision/recall, false positive/negative rates (i.e. like detectors)
• note: the detector part may help even for short-term tracking problems, provides robustness to fast, unpredictable motions.

Optic Flow, Motion estimation: establish all correspondences a sequence
Other Tracking Problems:

... multiple object tracking ...

... another example, example2
Multi-object Tracking
Tracking as detection and identification

- ant tracking 1
- result 1
Other Tracking Problems:

Cell division.
http://www.youtube.com/watch?v=rgLJrvoX_qo

Three rounds of cell division in Drosophila Melanogaster.
http://www.youtube.com/watch?v=YFKA647w4Jg

splitting and merging events
The World of Fast Moving Objects

- FMO - object that moves over a distance exceeding its size within exposure time

- Standard datasets (VOT, OTB, ALOV) do not include FMOs

https://arxiv.org/abs/1611.07889
FMO Examples

- Ping pong, tennis, frisbee, volleyball, badminton, squash, darts, arrows, softball
- Some FMOs are nearly homogeneous, while some have coloured texture
- SOTA trackers fail...
Applications: deblurring, temporal superresolution
Estimation of Appearance

- Reconstruction of FMOs blurred by motion and rotation
- Axis of rotation, angle of rotation, full 3D appearance, ...
Motion Estimation from a Single Image
Tracking problem variations:

- multiple cameras
- RGBD sensors
- combination of sensors (accelerometer + visual)
Tracking problems

- motion estimation (establishing point-to-point correspondences) v. segmentation (region-to-region correspondences)
- long-term v. short-term
- one object v. multiple objects
- casual v. non-causal (= offline video analysis)
- single v. multi-camera
- static v. moving camera
The KLT tracker
Fragment tracking

– Problem: tracking “key points” (SIFT, SURF, STAR, RIFF, FAST), or random image patches, as long as possible
 • Input: detected/chosen patches
 • Output: tracklets of various life-spans

\[
\hat{d} = \arg\min_d \sum_{p \in R(x)} |I^{(t+1)}(p + d) - I^{(t)}(p)|^2
\]

slide credit: Patrick Perez
Fragment tracking

– Problem: tracking “key points” (SIFT, SURF, STAR, RIFF, FAST), or random image patches, as long as possible
 • Input: detected/chosen patches
 • Output: tracklets of various life-spans

\[
\hat{d} = \arg \min_d \sum_{p \in R(x)} |I(t+1)(p + d) - I(t)(p)|^2 \\
\text{SSD}
\]
Multi-resolution Lucas-Kanade

First assuming small displacement: 1st-order Taylor expansion inside SSD

\[
\hat{d} = \arg \min_{d} \sum_{p \in R(x)} |I(t+1)(p) + \nabla I(t+1)(p)^T d - I(t)(p)|^2
\]

For good conditioning, patch must be textured/structured enough:

- Uniform patch: no information
- Contour element: aperture problem (one dimensional information)
- Corners, blobs and texture: best estimate

[Lucas and Kanda 1981][Tomasi and Shi, CVPR’94]
Multi-resolution Lucas-Kanade

- Arbitrary displacement
 - Multi-resolution approach: Gauss-Newton like approximation down image pyramid

\[
\{I^{(\ell,t)}\} \quad \{I^{(\ell,t+1)}\}
\]

\[
\hat{d}^{(\ell)} = \arg \min_v \sum_{p \in R^\ell(x)} |I^{(\ell,t+1)}(p+2d^{(\ell)}) + \nabla I^{(\ell,t+1)}(p+2d^{(\ell)})^T v - I^{(\ell,t)}(p)|^2
\]

\[
\hat{v} = -\left(\sum_{p \in R^\ell(x)} \nabla I^{(\ell,t)}(p) \nabla I^{(\ell,t+1)}(p)^T \right)^{-1} \sum_{p \in R(x)} \nabla I^{(\ell,t+1)}(p) \hat{I}^{(\ell,t+1)}(p)
\]

slide credit: Patrick Perez
Monitoring quality

- Translation is usually sufficient for small fragments, but:
 - Perspective transforms and occlusions cause drift and loss
- Two complementary options
 - Kill tracklets when minimum SSD too large
 - Compare as well with *initial patch under affine transform (warp)* assumption

\[
\hat{d} = \arg \min_d \sum_{p \in R_t} |I^{(t+1)}(p + d) - I^{(t)}(p)|^2
\]

\[
\hat{w} = \arg \min_w \sum_{p \in R_0} |I^{(t+1)}(w[p]) - I^{(0)}(p)|^2
\]
Characteristics of KLT

• cost function: sum of squared intensity differences between template and window
• optimization technique: gradient descent
• model learning: no update / last frame / convex combination

• attractive properties:
 – fast
 – easily extended to image-to-image transformations with multiple parameters
The Mean-shift Tracker (colour-based tracking)
Color-based tracking

- Global description of tracked region: color histogram
- Reference histogram with B bins

$$ q^* = (q_u^*)_{u=1}^{B} $$
set at track initialization

- Candidate histogram at current instant

$$ q(x) = (q_u(x))_{u=1}^{B} $$
gathered in region $R(x)$ of current image.

- At each instant

$$ \hat{x}_{t+1} = \arg\min_x \text{dist}(q^*, q(x)) $$

- searched around \hat{x}_t

- iterative search initialized with \hat{x}_t: meanshift-like iteration
Color-based tracking

– Global description of tracked region: color histogram
– Reference histogram with B bins

\[q^* = (q^*_u)_{u=1}^B \]
set at track initialization

– Candidate histogram at current instant

\[q(x) = (q_u(x))_{u=1}^B \]
gathered in region $R(x)$ of current image.

– At each instant

\[\hat{x}_{t+1} = \arg \min_x \text{dist}(q^*, q(x)) \]

• searched around

• iterative search initialized with \hat{x}_t: meanshift-like iteration
Color-based tracking

- Global description of tracked region: color histogram
- Reference histogram with B bins

\[q^* = (q_u^*)_{u=1 \ldots B} \]

set at track initialization

- Candidate histogram at current instant

\[q(x) = (q_u(x))_{u=1 \ldots B} \]
gathered in region $R(x)$ of current image.

- At each instant

\[\hat{x}_{t+1} = \arg\min_x \text{dist}(q^*, q(x)) \]

 • searched around
 • iterative search initialized with \hat{x}_t : meanshift-like iteration

slide credit: Patrick Perez
Color distributions and similarity

– Color histogram weighted by a kernel
 • Kernel elliptic support sits on the object
 • Central pixels contribute more
 • Makes differentiation possible

\[q_u(x) \propto \sum_{p_i \in R(x)} k \left(\| p_i - x \|^2_{H^{-1}} \right) 1[I(p_i) \in b_u] \]

• \(H \): “bandwidth” sym. def. pos. matrix, related to bounding box dimensions
• \(k \): “profile” of kernel (Gaussian or Epanechnikov)

– Histogram dissimilarity measure
 • Battacharyya measure
 \[\text{dist}(q^*, q(x))^2 = 1 - \sum_u \sqrt{q_u^* q_u(x)} = 1 - \rho[q^*, q(x)] \]
 • Symmetric, bounded, null only for equality
 • 1 - dot product on positive quadrant of unitary hyper-sphere
Color distributions and similarity

– Color histogram weighted by a kernel
 • Kernel elliptic support sits on the object
 • Central pixels contribute more
 • Makes differentiation possible

\[q_u(x) \propto \sum_{p_i \in R(x)} k \left(\| p_i - x \|^2_{H^{-1}} \right) 1[I(p_i) \in b_u] \]

• \(H \): “bandwidth” sym. def. pos. matrix, related to bounding box dimensions
• \(k \): “profile” of kernel (Gaussian or Epanechnikov)

– Histogram dissimilarity measure
 • Battacharyya measure
 \[\text{dist}(q^*, q(x))^2 = 1 - \sum_u \sqrt{q_u^* q_u(x)} = 1 - \rho[q^*, q(x)] \]
 • Symmetric, bounded, not only for equality
 • 1 - dot product on positive quadrant of unitary hyper-sphere

slide credit: Patrick Perez
Iterative ascent

\[\hat{x}_{t+1} = \arg \max_x \sum_u \sqrt{q_u^*q_u(x)} \]

\[q_u(x) \propto \sum_{p_i} k \left(\|p_i - x\|_H^2 \right) 1[I(p_i) \in b_u] \]

– Non quadratic minimization: iterative ascent with linearizations

\[u_i \text{ bin index of pixel } i: I(p_i) \in b_{u_i} \]

\[\nabla \sum_u \sqrt{q_u^*q_u(x)} \propto H^{-1} \sum_{p_i} \sqrt{q_{u_i}^*} k'(\|p_i - x\|_H^2) (x - p_i) \]

– Setting move to (g=-h’)

\[\sum_{p_i} \sqrt{q_{u_i}^*} g \left(\|p_i - x\|_H^2 \right) (p_i - x) \]

\[\sum_{p_i} \sqrt{q_{u_i}^*} g \left(\|p_i - x\|_H^2 \right) = \text{MeanShift}(x) - x \]

yields a simple algorithm...
Meanshift tracker

• In frame $t+1$
 – Start search at $y(0) = \hat{x}_t$
 – Until stop
 • Compute candidate histogram $q(y^{(n)})$
 • Weight pixels inside kernel support
 $$\forall p_i \in R(y^{(n)}), \ w_i \propto \sqrt{\frac{q^*_i}{q_i(y^{(n)})}} g \left(\|p_i - y^{(n)}\|_{H-1}^2 \right), \ \sum_i w_i = 1$$
 • Move kernel
 $$y^{(n+1)} = y^{(n)} + [\text{MeanShift}(y^{(n)}) - y^{(n)}] = \sum_{p_i \in R(y^{(n)})} w_i p_i$$
 • Check overshooting
 until $\rho[q^*, p(y^{(n+1)})] < \rho[q^*, p(y^{(n)})]$, $y^{(n+1)} \leftarrow \frac{y^{(n)} + y^{(n+1)}}{2}$
 • If $\|y^{(n+1)} - y^{(n)}\|^2 < \varepsilon_{\text{stop}}$, else $n \leftarrow n + 1$
 $\hat{x}_{t+1} = y^{(n+1)}$
Mean Shift tracking example

Feature space: 16×16×16 quantized RGB
Target: manually selected on 1st frame
Average mean-shift iterations: 4
Mean Shift tracking example

Pros and cons

- Low computational cost (easily real-time)
- Surprisingly robust
 - Invariant to pose and viewpoint
 - Often no need to update reference color model

- Invariance comes at a price
 - Position estimate prone to fluctuation
 - Scale and orientation not well captured
 - Sensitive to color clutter (e.g., teammates in team sports)

- Local search by gradient descent

- Problems:
 - abrupt moves
 - occlusions
Tracking with Correlation Filters

Acknowledgement to João F. Henriques from Institute of Systems and Robotics University of Coimbra for providing materials for this presentation
Overview

- Discriminative tracking
- Connection of correlation and the discriminative tracking
- Brief history of correlation filters
- Breakthrough by MOSSE tracker
- Kernelized Correlation Filters
- Discriminative Correlation Filters
Discriminative Tracking (T. by Detection)

$t=0$

+1 +1 +1 -1 -1 -1

Classifier

samples

labels

Classify subwindows to find target

t>0
Discriminative Tracking

- How to get training samples for the classifier?
- **Standard approach:**
 - bbboxes with high overlap with the GT \rightarrow **Pos. samples**
 - bbboxes far from the GT \rightarrow **Neg. samples**

What with the samples in the unspecified area?
Connection to Correlation

- Let’s have a linear classifier with weights \mathbf{w}
 $$y = \mathbf{w}^T \mathbf{x}$$

- During tracking we want to evaluate the classifier at subwindows \mathbf{x}_i:
 $$y_i = \mathbf{w}^T \mathbf{x}_i$$

- Then we can concatenate \mathbf{v}_i into a vector \mathbf{y} (i.e. response map)

- This is equivalent to cross-correlation formulation which can be computed efficiently in Fourier domain
 $$\mathbf{y} = \mathbf{x} \ast \mathbf{w}$$

 - Note: Convolution is related: it is the same as cross-correlation, but with the flipped image of \mathbf{w} $(\mathbf{P} \rightarrow \mathbf{d})$.

Tracking with Correlation Filters
The Convolution Theorem

“Cross-correlation is equivalent to an element-wise product in Fourier domain”

\[y = x \odot w \quad \Leftrightarrow \quad \hat{y} = \hat{x}^* \times \hat{w} \]

where:

- \(\hat{v} = \mathcal{F}(v) \) is the Discrete Fourier Transform (DFT) of \(y \).
 (likewise for \(\hat{x} \) and \(\hat{w} \))
- \(\times \) is element-wise product
- \(\cdot^* \) is complex-conjugate (i.e. negate imaginary part).

- Note that cross-correlation, and the DFT, are cyclic
 (the window wraps at the image edges).
The Convolution Theorem

“Cross-correlation is equivalent to an element-wise product in Fourier domain”

\[y = x \odot w \quad \iff \quad \hat{y} = \hat{x}^* \times \hat{w} \]

- In practice:

- Can be orders of magnitude faster:
 - For \(n \times n \) images, cross-correlation is \(O(n^4) \).
 - Fast Fourier Transform (and its inverse) are \(O(n^2 \log n) \).
Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an element-wise product in Fourier domain”

\[y = x \odot w \quad \iff \quad \hat{y} = \hat{x}^* \times \hat{w} \]

- Conclusion:

The evaluation of any linear classifier can be accelerated with the Convolution Theorem.

- “linear” can become non-linear using kernel trick in some specific cases (will be discussed later)

- Q: How the \(w \) for correlation should look like? What about training?
Connection to Correlation

Q: How the \(w \) for correlation should look like? What about training?

Objective

\[
\odot w = \text{High values, Unspecified, Low values}
\]

Intuition of requirements of cross-correlation of classifier(filter) \(w \) and a training image \(x \)

- A high peak near the true location of the target
- Low values elsewhere (to minimize false positive)
Minimum Average Correlation Energy (MACE) filters, 1980’s

- Bring average correlation output towards 0:
 \[
 \min_w \| x \odot w \|^2
 \]

 except for target location, keep the peak value fixed:

 subject to: \(w^T x = 1 \)

- This produces a sharp peak at target location with closed form solution:

 \[
 \hat{w} = \frac{\hat{x}}{\hat{x}^* \times \hat{x}}
 \]

 - \(\hat{x}^* \times \hat{x} \) is called the spectrum and is real-valued.
 - division and product (\(\times \)) are element-wise.

- Sharp peak = good localization! Are we done?
The MACE filter suffers from 2 main issues:

1. **Hard constraints** easily lead to overfitting.
 - **UMACE** (“Unconstrained MACE”) addresses this by removing the hard constraints and require to produce a high average correlation response on positive samples. However, it still suffer from the 2nd problem.

2. **Enforcing a sharp peak** is too strong condition; lead to overfitting
 - **Gaussian-MACE / MSE-MACE** – peak to follow a 2D Gaussian shape

\[
\min_{\mathbf{w}} \left\| \mathbf{x} \ast \mathbf{w} - \mathbf{g} \right\|^2, \quad \text{subject to: } \mathbf{w}^T \mathbf{x} = 1
\]

- In the original method (1990’s), the minimization was *still* subject to the MACE hard constraint.
* (It later turned out to be unnecessary!*)
Brief History of Correlation Filters

Sharp vs. Gaussian peaks

Training image: \(x = \)

Naïve filter
\((w = x)\)

Classifier
\((w)\)

Output
\((w * x)\)

- Very broad peak is hard to localize (especially with clutter).
- State-of-the-art classifiers (e.g. SVM) show same behavior!
Brief History of Correlation Filters

Sharp vs. Gaussian peaks

Training image: \(x = \)

\[
\begin{align*}
\mathbf{x} &= \begin{bmatrix}
1.0 \\
0.0
\end{bmatrix} \\
\mathbf{w} &= \mathbf{x} \\
\mathbf{w}^* &\cdot \mathbf{x} \\
\text{Naïve filter} &\quad (\mathbf{w} = \mathbf{x}) \\
\text{Sharp peak} &\quad (\text{UMACE})
\end{align*}
\]

Classifier \((\mathbf{w})\)

Output \((\mathbf{w} \ast \mathbf{x})\)

- A very sharp peak is obtained by emphasizing **small image details** (like the fish’s scales here).
- **generalizes poorly**: fine scale details that are usually not robust
Brief History of Correlation Filters

Sharp vs. Gaussian peaks

Training image: \(x = \)

Naïve filter \((w = x)\)

Sharp peak \(\text{(UMACE)}\)

Gaussian peak \(\text{(GMACE)}\)

Classifier \((w)\)

Output \((w \ast x)\)

- A good compromise.
- Tiny details are ignored.
- Focuses on larger, more robust structures.
Breakthrough by MOSSE tracker

Min. Output Sum of Sq. Errors (MOSSE)

- Presented by David Bolme and colleagues at CVPR 2010

- Tracker run at speed over a 600 frames per second

- very simple to implement
 - no complex features only raw pixel values
 - only FFT and element-wise operation

- performance similar to the most sophisticated tracker (at that time)
Breakthrough by MOSSE tracker

How does it work?

- Use only the “Gaussian peak” objective (no hard constraints)

$$\min_w \| x \odot w - g \|^2,$$

- Found the following solution using the Convolution Theorem:

$$\hat{w} = \frac{\hat{g}^* \times \hat{x}}{\hat{x}^* \times \hat{x} + \lambda}$$

$$\lambda = 10^{-4} \text{ is artificially added to prevent divisions by 0}$$

- No expensive matrix operations! \(\Rightarrow\) only FFT and element-wise op.
Breakthrough by MOSSE tracker

Implementation aspects

- Cosine (or sine) window preprocessing

 - image edges smooth to zero
 - the filter sees an image as a “cyclic” (important for the FFT)
 - gives more importance to the target center.

- Simple update

$$\hat{w}_{\text{new}} = \frac{\hat{g}^* \times \hat{x}}{\hat{x}^* \times \hat{x} + \lambda}$$

$$\hat{w}_t = (1 - \eta)\hat{w}_{t-1} + \eta\hat{w}_{\text{new}}$$

Train a MOSSE filter \hat{w}_{new} using the new image \hat{x}.

Update previous solution \hat{w}_{t-1} with \hat{w}_{new} by linear interpolation.
Breakthrough by MOSSE tracker

Implementation aspects

- Scale adaptation

<table>
<thead>
<tr>
<th>Scale</th>
<th>Input image</th>
<th>Detection output</th>
</tr>
</thead>
<tbody>
<tr>
<td>× 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Extract patches with different scales and normalize them to the same size
- Run classification; use bounding box with the highest response
Why MOSSE works?

Ridge Regression Formulation

\[
\begin{align*}
\text{= Least-Squares with regularization (avoids overfitting!)} \\
\text{Consider simple Ridge Regression (RR) problem:} \\
\min_w \|Xw - y\|^2 + \lambda\|w\|^2 \\
\text{has closed-form solution: } w = (X^TX + \lambda I)^{-1}X^Ty
\end{align*}
\]

We can replace \(X = \mathcal{C}(x)\) (circulant data), and \(y = g\) (Gaussian targets).

- **Diagonalizing** the involved circulant matrices with the DFT yields:

\[
\hat{w} = \frac{\hat{x}^* \times \hat{y}}{\hat{x}^* \times \hat{x} + \lambda} \quad \Rightarrow \\
\begin{align*}
\bullet \text{Exactly the MOSSE solution!} \\
\bullet \text{good learning algorithm (RR) with lots of data (circulant/shifted samples).}
\end{align*}
\]
Kernelized Correlation Filters

- Circulant matrices are a **very general tool** which allows to replace standard operations with fast Fourier operations.

- The same idea can by applied e.g. to the **Kernel Ridge Regression**:

 with K kernel matrix $K_{ij} = \kappa(x_i, x_j)$ and dual space representation

 $$\alpha = (K + \lambda I)^{-1}y$$

- For many kernels, circulant data \Rightarrow circulant K matrix

 $$K = C(k^{xx})$$

 where k^{xx} is kernel auto-correlaton and
 the first row of K (small, and easy to compute)

- Diagonalizing with the DFT for learning the classifier yields:

 $$\hat{\alpha} = \frac{\hat{y}}{\hat{k}^{xx} + \lambda}$$

 \Rightarrow **Fast solution** in $O(n \log n)$. Typical kernel algorithms are
 $O(n^2)$ or higher!
The $k^{xx'}$ is kernel correlation of two vectors x and x'

$$k_i^{xx'} = \kappa(x', P_i^{-1}x)$$

For Gaussian kernel it yields:

$$k^{xx'} = \exp \left(-\frac{1}{\sigma^2} \left(\|x\|^2 + \|x'\|^2 - 2 \mathcal{F}^{-1}(\hat{x}^* \odot \hat{x}') \right) \right)$$

Evaluation on subwindows of image z with classifier α and model x:

1. $K^z = C(k^{xz})$
2. $f(z) = \mathcal{F}^{-1}(\hat{k}^{xz} \odot \hat{\alpha})$

Update classifier α and model x by linear interpolation from the location of maximum response $f(z)$

Kernel allows integration of more complex and multi-channel features
Kernelized Correlation Filters

KCF Tracker

- very few hyperparameters
- code fits on one slide of the presentation!
- Use HoG features (32 channels)
- ~300 FPS
- Open-Source (Matlab/Python/Java/C)

Training and detection (Matlab)

```matlab
function alphaf = train(x, y, sigma, lambda)
    k = kernel_correlation(x, x, sigma);
    alphaf = fft2(y) ./ (fft2(k) + lambda);
end

function y = detect(alphaf, x, z, sigma)
    k = kernel_correlation(z, x, sigma);
    y = real(ifft2(alphaf .* fft2(k)));
end

function k = kernel_correlation(x1, x2, sigma)
    c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
    d = x1(:)'*x1(:) + x2(:)'*x2(:) - 2 * c;
    k = exp(-1 / sigma^2 * abs(d) / numel(d));
end
```

Sum over channel dimension in kernel computation
From KCF to Discriminative CF trackers

Basic
- Henriques et al. – CSK
 - raw grayscale pixel values as features
- Henriques et al. – KCF
 - HoG multi-channel features

Further work
- Danelljan et al. – DSST:
 - PCA-HoG + grayscale pixels features
 - filters for translation and for scale (in the scale-space pyramid)
- Li et al. – SAMF:
 - HoG, color-naming and grayscale pixels features
 - quantize scale space and normalize each scale to one size by bilinear inter. → only one filter on normalized size
Discriminative Correlation Filters Trackers

- Danelljan et al. – SRDCF:
 - spatial regularization in the learning process
 → limits boundary effect
 → penalize filter coefficients depending on their spatial location
 - allows to use much larger search region
 - more discriminative to background (more training data)

CNN-based Correlation Trackers

- Danelljan et al. – Deep SRDCF, CCOT (best performance in VOT 2016)
- Ma et al.
 - features: VGG-Net pretrained on ImageNet dataset extracted from
 third, fourth and fifth convolution layer
 - for each feature learn a linear correlation filter

CNN-based Trackers (not correlation based)

- Nam et al. – MDNet, T-CNN:
 - CNN classification (3 convolution layers and 2 fully connected layers)
 - learn on tracking sequences with bbox regression
Discriminative Correlation Filter with Channel and Spatial Reliability

https://arxiv.org/abs/1611.08461
State-of-the-art results, outperforms even trackers based on deep NN

Simple features:
- HoG features (18 contrast sensitive orientation channels)
- binarized grayscale channel (1 channel)
- color names (~mapping of RGB to 10 channels)

Single-CPU single-thread, matlab implementation @13 fps
 CSR-DCF

• Algorithm (repeats 1,2)
• Training:
 – Estimate object segmentation → object mask
 – Learn correlation filter using the object mask as constraints
 – Update generative weights for the feature channels
• Localization:
 – Compute response map from the weighted feature channels responses
 – Update discriminative weights for the feature channels
 – Estimate best position (max peak location + subpixel localization)
 – Estimate scale (standard approach used in correlation tracking)
CSR-DCF

Channel Regularized

• Online weighting scheme of features

• The feature channels are weighted by:
 – their absolute contribution to the correct label response during filter learning, i.e. generative weighting (the higher contribution to the correct response the better)
 – ratio of first and second max peaks of the filter response during tracking, i.e. discriminative weighting (the larger difference between first and second peak the better)

Localization:
CSR-DCF

Spatial Regularization

- GrabCut based segmentation on estimated location (or initial position) → pixel-wise object mask
- Correlation filter is trained using the object mask, i.e. pixels that do not belong to the target are disabled
- Advantages:
 - Reduces influence of bounding box object representation for object that undergoes e.g. rotation, deformation or aspect ratio change
 - Allows for large search region (i.e. large movement), since the filter training is focused by the object mask
CSR-DCF

- Results for standard benchmarks: VOT2015 (left) and VOT2016 (right)

<table>
<thead>
<tr>
<th>Tracker</th>
<th>Published at</th>
<th>EAO</th>
<th>A_{av}</th>
<th>P_{av}</th>
<th>fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR-DCF</td>
<td>This work.</td>
<td>0.338</td>
<td>0.51</td>
<td>0.85</td>
<td>13.0</td>
</tr>
<tr>
<td>CCOT</td>
<td>ECCV2016</td>
<td>0.331</td>
<td>0.52</td>
<td>0.85</td>
<td>0.55</td>
</tr>
<tr>
<td>CCOT*</td>
<td>ECCV2016</td>
<td>0.274</td>
<td>0.52</td>
<td>1.18</td>
<td>1.0</td>
</tr>
<tr>
<td>SRDCF</td>
<td>ICCV2015</td>
<td>0.247</td>
<td>0.52</td>
<td>1.50</td>
<td>7.3</td>
</tr>
<tr>
<td>KCF</td>
<td>PAMI2015</td>
<td>0.192</td>
<td>0.48</td>
<td>2.03</td>
<td>115.7</td>
</tr>
<tr>
<td>DSST</td>
<td>PAMI2016</td>
<td>0.181</td>
<td>0.48</td>
<td>2.52</td>
<td>18.6</td>
</tr>
<tr>
<td>Struck</td>
<td>ICCV2011</td>
<td>0.142</td>
<td>0.42</td>
<td>3.37</td>
<td>8.5</td>
</tr>
</tbody>
</table>
CSR-DCF

• Results for standard benchmark: OTB2015

• Speed analysis
Discriminative Correlation Filters - Summary

- state-of-the-art performance on standard benchmark
- more efficient than competing DNN approaches

- cost function: discriminative, kernel based
- optimization:
 - efficient for translation
 - response not only at the location of the maximum

- issues with non-square objects
- transformations beyond translation handled ad-hoc
- outputs a global transformation:
 - providing only an approximate flow field
 - segmentation not part of the standard formulation
The TLD (PN) Long-Term Term Tracker
The TLD (PN) Long-Term Tracker

includes:
• adaptive tracker(s) (FOT)
• object detector(s)
• P and N event recognizers for unsupervised learning generating \(\text{possibly incorrectly}\) labelled samples
• an (online) supervised method that updates the detector(s)

Operation:
1. Train **Detector on** the first patch
2. Runs **TRACKER** and **DETECTOR** in parallel
3. Update the object **DETECTOR using P-N learning**
TLD a.k.a. PN Tracker a.k.a. “The Predator”

Zdenek Kalal, Jiri Matas, Krystian Mikolajczyk
University of Surrey, UK
Czech Technical University, Czech Republic

P-event: “Loop”

- exploits **temporal** structure
- turns drift of adaptive trackers into an advantage

Assumption:
If an adaptive tracker fails, it is unlikely to recover.

Rule:
Patches from a track starting and ending in the current model (black), i.e. are validated by the detector, are added to the model.
N-event: Uniqueness Enforcement

- exploits **spatial** structure

- **Assumption:**
 Object is unique in a single frame.

- **Rule:**
 If the tracker is in model, all other detections within the current frame (red) are assumed wrong \rightarrow prune from the model
The Detector

- Scanning window
- Randomized forest
- Trees implemented as ferns [Lepetit 2005]
- Real-time training/detection 20 fps on 320x240 image

- High accuracy, 8 trees of depth 10
- 2bit Binary Patterns Combined Haar and LBP features
- Tree depth controls complexity & discriminability; currently not adaptive
The Flock of Trackers
(with error prediction)

work with T. Vojir
The Flock of Trackers

- A \(n \times m \) grid (say 10x10) of Lucas-Kanade / ZSP trackers
- Tracker initialised on a regular grid
- Robust estimation of global, either "median" direction/scale or RANSAC (up to homography)
- Each tracker has a failure predictor
Two classical Failure Predictors

Normalized Cross-correlation

- Compute normalized cross-correlation between local tracker patch in time t and $t+1$
- Sort local trackers according to NCC response
- Filter out bottom 50% (Median)

Forward-Backward

- Compute correspondences of local trackers from time t to $t+k$ and $t+k$ to t and measure the k-step error
- Sort local trackers according to the k-step error
- Filter out bottom 50% (Median)

Failure Predictor: Neighbourhood Consistency

• For each local tracker \(i \) is computed neighbourhood consistency score as follows:

\[N_i \text{ is four neighbourhood of local tracker } i, \Delta \text{ is displacement and } \varepsilon \text{ is displacement error threshold} \]

• Local trackers with \(S_{i}^{Nh} < \Theta_{Nh} \) are filtered out.

• Setting:
 \(\varepsilon = 0.5 \text{px} \)
 \(\Theta_{Nh} = 1 \)
Failure Predictors: Temporal consistency

- Markov Model predictor (MMp) models local trackers as two states (i.e. inlier, outlier) probabilistic automaton with transition probabilities \(p^i(s_{t+1} \mid s_t) \)

- MMp estimates the probability of being an inlier for all local trackers \(\Rightarrow \) filter by
 1) Static threshold \(\Theta_s \)
 2) Dynamic threshold \(\Theta_r \)

- Learning is done incrementally (learns are the transition probabilities between states)

- Can be extended by “forgetting”, which allows faster response to object appearance change
The combined outlier filter Σ

Combining three indicators of failure:
- Local appearance (NCC)
- Neighbourhood consistency (N_h) (similar to smoothness assumption used in optic flow estimation)
- Temporal consistency using a Markov Model predictor (MMp)

- Together form very a stronger predictor than the popular forward-backward

- Negligible computational cost (less than 10%)

T. Vojir and J. Matas. Robustifying the flock of trackers. CVWW '11,
FoT Error Prediction Bike tight box (ext. viewer)
FoT Error Prediction Bike loose box (ext. viewer)
FoT Error Prediction

(ext. viewer)

inliers: 33 / 100

fp: 58%
fp: 58%
fp: 67%
fp: 54%
fp: 45%
fp: 44%
More TLD videos
Evaluation of Trackers
Tracking: Which methods work?
Tracking: Which methods work?

- Particle Filter
- Standard MCMC
- Method of Ross
- Mean Shift
What works? “The zero-order tracker” 😊
Compressive Tracker (ECCV’12). Different runs.
VOT community evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Users</th>
<th>Coauthors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCV2013</td>
<td>1,500</td>
<td>51</td>
<td>14</td>
</tr>
<tr>
<td>ECCV2014</td>
<td>3,000</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>ICCV2015</td>
<td>128</td>
<td>128</td>
<td>24</td>
</tr>
<tr>
<td>ECCV2016</td>
<td>141</td>
<td>141</td>
<td>44</td>
</tr>
</tbody>
</table>
VOT challenge evolution

<table>
<thead>
<tr>
<th>Perf. Measures</th>
<th>Dataset size</th>
<th>Target box</th>
<th>Property</th>
<th>Trackers tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOT2013 ranks, A, R</td>
<td>16, s. manual</td>
<td>manual</td>
<td>per frame</td>
<td>27</td>
</tr>
<tr>
<td>VOT2014 ranks, A, R, EFO</td>
<td>25, s. manual</td>
<td>manual</td>
<td>per frame</td>
<td>38</td>
</tr>
<tr>
<td>VOT2015 EAO, A, R, EFO</td>
<td>60, fully auto</td>
<td>manual</td>
<td>per frame</td>
<td>62 VOT, 24 VOT-TIR</td>
</tr>
<tr>
<td>VOT2016 EAO, A, R, EFO</td>
<td>60, fully auto</td>
<td>auto</td>
<td>per frame</td>
<td>70 VOT, 24 VOT-TIR</td>
</tr>
</tbody>
</table>

- Gradual increase of dataset size
- Gradual refinement of dataset construction
- Gradual refinement of performance measures
- Gradual increase of tested trackers
Class of trackers tested

- Single-object, single-camera

- Short-term:
 - Trackers performing without re-detection

- Causality:
 - Tracker is not allowed to use any future frames

- No prior knowledge about the target
 - Only a single training example - BBox in the first frame

- Object state encoded by a bounding box
Construction (1/3): Sequence candidates

- ALOV (315 seq.) [Smeulders et al., 2013]
- OTB (~50 seq.) [Wu et al., 2013]
- PTR (~50 seq.) [Vojir et al., 2013]
- >30 new sequences from VOT2015 committee

Filtered out:
- Grayscale sequences
- <400 pixels targets
- Poorly-defined targets
- Artificially created sequences

356 sequences

VOT Automatic Dataset Construction Protocol: cluster + sample

443 sequences
Construction (2/3): Clustering

• Approximately annotate targets
• 11 global attributes estimated automatically for 356 sequences (e.g., blur, camera motion, object motion)

Feature encoding

Affinity Propagation [Frey, Dueck 2007]

• Cluster into $K = 28$ groups (automatic selection of K)
Construction (3/3): Sampling

- Requirement:
 - **Diverse** visual attributes
 - **Challenging** subset

- Global visual attributes: computed
- Tracking difficulty attribute: Applied FoT, ASMS, KCF trackers
- Developed a **sampling strategy** that sampled challenging sequences while keeping the global attributes diverse.
VOT2015/16 dataset: 60 sequences
Object annotation

• Automatic bounding box placement
 1. Segment the target (semi-automatic)
 2. Automatically fit a bounding box by optimizing a cost function
Sequence ranking

• Among the most challenging sequences

 Matrix ($A_f = 0.33$, $M_f = 57$)
 Rabbit ($A_f = 0.31$, $M_f = 43$)
 Butterfly ($A_f = 0.22$, $M_f = 45$)

• Among the easiest sequences

 Singer1 ($A_f = 0.02$, $M_f = 4$)
 Octopus ($A_f = 0.01$, $M_f = 5$)
 Sheep ($A_f = 0.02$, $M_f = 15$)
VOT2016 Challenge

News and updates

July 14th, 2016: - Workshop day

The VOT workshop will be held on October 10th.

You find the old news here.

Call for participation and for papers

We are happy to announce the 4th VOT Workshop, that will take place in conjunction with ECCV 2016. The event follows the three highly successful workshops VOT2013 (ICCV2013), VOT2014 (ECCV2014), and VOT2015 (ICCV2015).

Researchers from industry as well as academia are invited to participate. The challenge aims at single-object short-term trackers that do not apply pre-learned models of object appearance (model-free). Trackers do not necessarily need to be capable of automatic re-initialization, as the objects are visible over the whole course of the sequences.

We are also announcing the second VOT thermal imagery tracking sub-challenge VOT-TIR2016. The details of the VOT2016 and VOT-TIR2016 sub-challenge will be available soon.

The results of the VOT2016 and VOT-TIR2016 challenges will be presented at the ECCV2016 VOT workshop.

The VOT committee also solicits full-length papers describing:

Main novelty – better ground truth.

- Each frame manually per-pixel segmented
- B-boxes automatically generated from the segmentation
VOT Results: Realtime

2013
- PLT (~169 fps)
- FoT (~156 fps)
- CCMS (~57 fps)

2014
- FoT (~190 fps)
- PLT (~112 fps)
- KCF (~36 fps)

2015
- ASMS (~172 fps)
- BDF (~300 fps)
- FoT (~190 fps)

- Flow-based, Mean Shift-based, Correlation filters
- Engineering, use of basic features
VOT 2016: Results

- C-COT slightly ahead of TCNN
- Most accurate: SSAT
- Most robust: C-COT and MLDF

Overlap curves

AR-raw plot
VOT 2016: Tracking speed

- Top-performers slowest
 - Plausible cause: CNN
- Real-time bound: Staple+
 - Decent accuracy,
 - Decent robustness

Note: the speed in some Matlab trackers has been significantly underestimated by the toolkit since it was measuring also the Matlab restart time. The EFOs of Matlab trackers are in fact higher than stated in this figure.
VOT public resources

• Resources publicly available: VOT page

• **Raw results** of all tested trackers

• Relevant **methodology papers**

• 2016: Submitted **trackers code/binaries**

• All fully **annotated datasets** (2013-2016)

• Documentation, tutorials, forum
Summary

• “Visual Tracking” may refer to quite different problems.

• The area is just starting to be affected by CNNs.

• Robustness at all levels is the road to reliable performance

• Key components of trackers:
 – target learning (modelling, “template update”)
 – integration of detection and temporal smoothness assumptions
 – representation of the image and target

• Be careful when evaluating tracking results
THANK YOU.
Questions, please?